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Two-dimensional time-periodic water waves on a gently sloping bottom are investi- 
gated under the classical long-wave assumptions that E = hh/A’ and S = H’/hA are 
small parameters (H’ being the wave height, h; a characteristic water depth and A’ 
the horizontal scale for the oscillatory motion) and the assumption that S/$ = O(1) 
as S and E tend to zero. 

It is shown that for a bottom slope h,  for which h, = o ( E ~ )  the governing KdV 
equation with slon-ly varying coefficients (derived by Johnson 1973a) has a time- 
periodic solution which in the first approximation is a slowly varying cnoidal wave. 
The second-order approximation in an asymptotic expansion with respect to the 
bottom slope represents the deformation of this wave due to the sloping bottom. For 
h, > €5 this deformation is larger than the second-order contribution from the basic 
expansion with respect to wave amplitude which underlies the KdV equation itself; 
the calculation is then a consistent approximation to physical reality. 

n’umerical results for the deformation are given. Also, the wave profiles are com- 
pared with experiments on a plane of slope h, = & and show good agreement even 
for the large values of H’,fh’ appropriate to waves rather close t o  breaking. 

1. Introduction 
The literature on long waves over a sloping bottom has grown steadily during the 

last decade, beginning with the numerical solution of the equations by Peregrine 
(1967), and continuing with the numerical work of Madsen & Mei (1969a, b ) ,  who based 
their analysis on the equations derived by Mei & LeMehaute (1966). A strictly 
numerical approach has been used by Street, Burges & Whitford (1968). 

The work presented here is concerned with a part of the problem which has so far 
been little investigated, with the exception of studies by Ostrovskiy fk Pelinovskiy 
(1970), Svendsen tk Brink-Kjaer (1972) and Svendsen & Buhr Hansen (1977), namely 
the slow transformation and deformation of a periodic wave train over a gently sloping 
bottom. (Grimshaw (1970) and Johnson (1973a, b )  considered the same problem for a 
solitary wave.) 

Madsen & Mei assumed that thebottom slope h, was of thesame order of magnitudeas 
the parameter E = h;/A’, A’ being a characteristic horizontal length of the wave motion 
(the wavelength or ‘length of a wave crest ’) say) and h; a characteristic water depth 
(primes denoting dimensional variables). This implies that appreciable changes in 
depth occur over the distance A’, and the bottom must therefore be termed steeply 
sloping. 
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FIGURE 1 .  Definition sketch. 

Their computations showed that a solitary wave propagating over a linear transition 
from one constant water depth to another, much smaller constant water depth would 
breed smaller trailing waves, which owing to their smaller height would propagate a t  
a lower speed. A similar result was obtained for the individual wave crests in a periodic 
wave train. A physical explanation seems to be that, on passing over a slope which is 
too steep, the wave is unable to adjust its initially stable form to the rapidly changing 
local depth. Thus the disintegration of the wave when it is propagating on the shelf 
is analogous to that found by Zabusky & Bruskal(l965) on a horizontal bottom using 
an initial wave shape which is not a constant-form solution to the horizontal-bottom 
KdV equation. 

This will happen even for waves of rather small amplitude-to-depth ratio 
(H’lh’  = 0.12 in the case described by Madsen & Mei). I n  nature, however, waves 
on a sloping breach are often seen to  develop gradually, their heights growing to the 
order of the water depth without any (visible) sign of disintegration, before they 
eventually break. Obviously this entirely different behaviour is a consequence of a 
more gentle bottom slope. 

This is clearly seen by looking a t  the mathematical description. If h, = o(e) the 
equations used by Peregrine and by Madsen & Mei (which are Boussinesq-type 
equations assuming q’A’2/hA3 = O( 1)) can be simplified considerably and actually 
reduced to a KdV-type equation in the surface elevation q (Johnson 1 9 7 3 ~ ) .  In  terms 
of variables (figure 1) that have been non-dimensionalized by the length A‘ and the 
time h‘/(ghA)* (g being the acceleration due to gravity) this equation reads 

(1) 

where c = ( h / t ) t ,  h being dimensionless and therefore O(e).  The last term in (1 ) repre- 
sents the influence of the depth variation, the derivative c, being equal to  hxc/2h;  
c and h are (slowly varying) functions of x. 

On a horizontal bottom this equation reduces to the well-known KdV equation 
with constant coefficients, with cnoidal waves as periodic solutions of constant form. 
The nonlinear term and the qXtS term (representing amplitude and frequency disper- 
sion respectively) will in this case be comparable, which implies that they are O(e6) 
(in the chosen non-dimensional system) and that q ,  qt and cqx are O(e3).  Applying these 
results to (1) shows that the last term will be O(h,e2). 

qt + cq3: + $ch-lqq, + &h2cq,,, + +c,? = 0, 
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If we now let h, 2 c3 (but still o(c ) )  the last term is 2 c5 and hence can destroy the 
balance between amplitude and frequency dispersion. Therefore c3 5 h, < c implies 
a radical distortion of the wave profile due to the sloping bottom as was also shown 
by Johnson (1972, 1973a), who investigated a solitary wave in this case and found 
that the waves disintegrate into solitons in much the same way as was found by Madsen 
& Mei for the even steeper slope h, = O(c) .  

The last term in (1) is only indirectly responsible for the disintegration of the waves. 
As shown by Za.busky & Kruskal (1965)) even the horizontal-bottom KdV equation 
has the property that an initial surface distribution is unstable if it is not a constant- 
form solution to that equation. Thus if the c, term in (1) is 2 € 5 ,  its role will essentially 
be to disturb the initially stable profile and hence produce conditions which even on 
a horizontal bottom would make the wave disintegrate into solitons. 

On the other hand, a slow and (up to a certain point) stable development of the 
wave profile, such as precedes breaking on a gentle beach, obviously requires that the 
last term in (1)  causes only a minor disturbance of the wave profile. In other words, 
what is felt by the wave as a gently sloping bottom requires that c2hx = 0(c6) as 
c+O,  or h, = 0(c3), and this is the case we shall consider here. Then an asymptotic 
expansion can be const’ructed (4 2) in which the first approximation is a cnoidal 
solution of the local horizontal-bottom equation. This is equivalent to the classical 
shoaling solution first considered for linear waves on an intuitive physical basis 
by Rayleigh (1911). For cnoidal waves the analogous problem was discussed by 
Ostrovskiy & Pelinovskiy (1970) and later by Svendsen & Brink-Kjaer (1972). 

The second approximation in the asymptotic expansion (which has not previously 
been obtained, to our knowledge) will represent the deformation of the wave due to 
the sloping bottom. We shall find in Q 3 that this skews the wave such that the front 
side is steeper than the rear side when h, < 0. In this approach the unperturbed (first- 
order) wave profile is determined only by the local water depth (and the initial data) 
while the deformation is a perturbation depending only on the first-order solution and 
is proportional to the local value of the bottom slope. Therefore, according to this 
solution, the deformation continuously adjusts itself to the local conditions as the 
wave propagates and remains small as long as h, and H/h.  are sufficiently small. This 
also implies that the disturbance (within this approximation) is ‘reversible’, so that 
if the wave propagates onto a shelf with a horizontal bottom the surface profile will 
‘immediately ’ regain its symmetrical shape, in contrast to the situation demonstrated 
by Madsen & Mei (1969b) for a steeper slope. In their case the major part of the 
deformation actually takes place after the wave has reached the horizontal shelf. 

On the other hand this behaviour clearly indicates that the theory cannot predict 
(even qualitatively) bhe last part of the process leading to breaking, where the actual 
deformation has an increasingly irreversible charact’er involving memory of its past 
history. From a certain point the wave will break irrespective of the local slope. 

Johnson (1973b) analysed the behaviour of a solitary wave on a slope by letting 
h,+O in the KdV equation ( l ) .?  It should be remembered, however, that the KdV 

t Grimshaw (1970) also investigated the development of a solitary wave on a slope. How- 
ever, he assumed a slowly varying solution without analysing for which magnitudes of h, such 
a solution exists. In  addition, after a certain st,ep in the development he cancelled (as pointed 
out by Johnson 1 9 7 3 ~ )  the ordering of the terms in the equations by simply putting the small 
parameters equal to unity. For these two reasons his final equations included various incon- 
sistent small terms. 

15- 2 
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equation represents only the first approximation to the physical phenomenon in an 
asymptotic description with respect to the amplitude parameter H / h  = O(e2).  The 
complete asymptotic expansion for the physical problem is of the type 

where r~ is a small parameter such that 

= 0(hXe-3) (2) 

and q-(Oj) corresponds to the general horizontal-bottom solution. The solution we obtain 
from the KdV equation (1) includes only q(00) and $10). As indicated above, y(O0) = O(s3) 
and consequently e27(01) is O(e5). Hence, if we want consistently to neglect this second- 
order solution in the amplitude, we must require 

o-q-(lo) 9 e2q-(ol) = 0 ( € 5 ) .  

I f  (as will be verified) ~ ( 1 0 )  N €3, this is equivalent to r~ 9 E~ and hence to h, 9 d‘. 
Thus the description developed in Johnson (1973b) and Grimshaw (1970) and ex- 
tended in the following is consistent only for 

e2 < cr < 1,  i.e. e5 < h, < 2. (3) 

Thus if we let h,+O we must require E + O  (and hence H,fh+O) simultaneously to 
maintain consistency. In  fact consistency could also be maintained for h, fixed but 
smaller than e5 by adding the pertinent higher-order solutions y(Oj) for the constant- 
depth case. 

Johnson (1973 b )  found that, at  the trailing end of a solitary-wave profile, oscillations 
develop whose amplitudes decay with increasing distance from the crest. The periodic 
solution studied here appears to be entirely different in that the periodicity con- 
ditions imposed on the deformed wave yield a continuous and smooth surface profile. 
At the same time the periodicity conditions supply the missing condition for the 
determination of the variable coefficients of the first-order solution, which is shown 
to correspond to the conservation of energy, i.e. to Rayleigh’s assumption of constant 
energy flux. 

The variation of the mean water level (‘wave set-down’) does not influence the 
solution to the order of magnitude considered, but may readily be derived from the 
equations, as may the radiation stress. 

Numerical results will be given for q(10) (denoted below by a@)) and the theoretical 
wave profiles will be compared with experimental results. This is of particular interest 
as one of the questions left open by the theoretical treatment is the numerical range 
of parameter values for which the assumptions for h, work in practice. It is shown that, 
for a plane of slope h, = & and values of A’lh’ which are not too large, the theoretical 
wave profiles agree remarkably well with the measured profiles, even for wave heights 
close to breaking. This also supports the general idea of using a cnoidal wave as a 
basis for the perturbation solution. 
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2. Asymptotic solution 
The fluid is assumed to be incompressible and the flow to be two-dimensional and 

irrotational. Introducing co-ordinates and definitions as shown in figure 1 , the non- 
dimensional system of variables introduced previously is used in the following. Note 
that h is assumed to be O ( B )  and no smaller, i.e. we exclude conditions where h-+ 0. 

We then seek solutions to (1) in the range of h, described by (3)  which are unifornily 
valid for large ranges of x and t .  To obtain these a two-scale method is chosen (e.g. 
Cole 1968, chap. 3 ;  Mahony 1972) in which a fast variable 0 and a slow variable X 
are defined by 

8 = 0,t + 0,dx, X = m 2 x .  (4) 
!OX 

Here 8 is a phase angle and 8, is chosen as L-l,  where L = O(1) is the local dimension- 
less wavelength; 8, will be assumed constant (time-periodic waves). Thus the ratio 
- 0,/8, is the local phase velocity [ = c( 1 + O(e2)]. 

The co-ordinate scaling (4) has been so arranged that h, N B N h, as can be seen 
from ( 2 )  and (4). 

We now regard 7 as a function of 8 and X, with qX N 7 N e3, and take 8x to be a 
function of X only. Posing the expansions 

7 = p ’ + q ( 1 ) + . . . )  (5a)  

0, = 8:’’ + a82’ + . . . ( 5 b )  

(8, + ~8p’ + &h-18io’7(0)) 7ho) + &h2~8$“37@0 = 0.  

yields upon substitution into ( 1  ) the equation for the leading approximation : 

( 6 )  

This is the KdV equation for a horizontal bottom, and the solution appropriate to 
this case is a periodic (cnoidal) wave with 

q ( O )  = H{P(m) + en2 (2K8, m ) }  + O(c5) (7a)  

and 0, = - B t / C l ,  ( 7 b )  

where c1 = c( 1 + A(m)  H / h ) i ,  ( 7 c )  

P(m) = ( l - E / K ) m - l - - l ,  ( 7 4  

A ( m )  = ( 2 - 3 E / K ) m - l - l ,  ( 7 e )  

(7f) u = HL2/h3 = U-mK2. 3 

H = O(e3) is the dimensionless wave height, K = K ( m )  and E = E ( m )  (0  < m < 1) are 
the complete elliptic integrals of the first and second kind respectively, m is their 
parameter and cn is the Jacobian elliptic function. m (and hence K and E )  is determined 
from the wave parameters in (7f). P represents the position of the mean water level 
relative to the wave trough and A is the amplitude dispersion. (The solitary wave 
is the special case of  ( 7 )  corresponding to m -+ 1, K-t co, E -+ 1 .) 

This solution has two parameters, H and m, which in this context are functions of 
X. Their determination was first discussed by Ostrovskiy & Pelinovskiy (1 970). 
Essentially H ( S )  and m ( X )  are determined by specification of the wave period (which 
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we have assumed constant) and specification of H for some value of X ,  together 
with the conservation of energy. Within our expansion procedure the condition 
corresponding to the conservation of energy will not in fact emerge until the next 
approximation is considered. 

The terms of order (T yield 

(0, + ce!jo)) qL1' + &h-1f3g'(~(o)q(1)), + @2c0g)3q&~ 

= - (&c,q(O)+ c q p )  e2 - O$)(cqbo) - #ch-lq(o)qLo) - $h2c8$"2qb9e). ( 8 )  

In(5a,b)wehaveq(O) = O ( H )  = O(e3)and6h0) = O(0,) = 0(1).Thusif (5a,b)areasymp- 
totic expansions in the small parameter r, we must have q(l) 5 q ( O )  and OL1) 5 @Lo). 
Inspection of (8), however, shows that OL1) N 6L0) cannot be accepted, because then the 
term OL1)cqbo' is O(e3), which is inconsistent with the fact that all other terms in (8) 
are O(e5). So we must require that OL1) = O(c2) at most; consequently the last two terms 
in (8) can be omitted. 

Having established the solution for q ( O ) ,  (8) can be solved for $l), which is readily 
done since (8) can be integrated once directly and the resulting second-order equation 
does not contain 0 explicitly. The complete solution to (8) is 

where ~ ( 8 ,  x) = / do)(w,x) + ~ ~ ( x ) ) d e  +p2(x), (9b) 

F(0, X )  = ac2 / (c,q(O) + 2 ~ 7 s ) )  do, ( 9 c )  

a = - 3/ (1 i20 ,ey) ,  ( 9 4  

C, Fl and F2 being arbitrary functions. 
The value of OL1) and the arbitrary functions Fl(X) and F2(X) are determined by 

requiring that both +l) and qbl) should be continuous and bounded at the points where 
qbo) = 0, i.e. at  the crest and trough of the first-order solution. It turns out that this is 
the case provided that 

0 p  = El@) = F2(X)  = 0. 

Now the only arbitrary function left is C ( X ) .  Firs6 it is realized that rho) is a solution 
to the homogeneous (i.e. horizontal-bottom) equation for q(l), so the term C ( X )  qLo) 
can be non-zero only if it  is required to suppress secular terms in the solution to the 
O(a2) equation (Cole 1968, p. 82; Reiss 1971). Further, since we are dealing with a 
regular perturbation problem in h,, a non-zero C ( X )  must vanish with h,. 

It may be shown that the equation for q(2) will have the same differential operator 
as that for q(l), and thus a term such as C ( X )  qbo) will be a resonant forcing term in the 
equation for ~ ( 2 ) .  The other possible resonant term has the form qbo)] 0bo)-2d0 and it 
turns out that neither of these resonant terms appears in the inhomogeneous part of 
the equation for Therefore, assuming the proper initial conditions such that 
q(l) --f 0 as h,+ 0 and 0 = 0 at the crest of the wave, we may put C ( X )  = 0 in (9). We 
then get 
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and 7 is given by (5 a) .  
Though (10) and (11) give the final solution it still remains to discover what con- 

straint should be placed on the X dependence of c, cx, y(O) and 7%) in order to ensure 
periodicity of the solution. Since <F = y ~ o ) q $ l ) - q ( l ) ~ ~ ~ )  from (lo), periodicity of q ( 1 )  

implies periodicity of 9, i.e. 

(12) F ( 0 , X )  = S ( 1 , X )  = 0. 

Integrating (1 1) by parts shows that this condition may be written as 

and since the first term can be shown to be zero this corresponds to requiring 

/,,lcy(~)zd~ = cr(0)2 = constant. (14) 

- 
Here c$O)2 corresponds to the mean energy flux F (Ostrovskiy & Pelinovskiy 1970), 
so that (14) formally proves that the well-known principle of constancy of energy Aux 
must apply to the first-order solution. This constraint and the constancy of the wave 
period together supply the extra condition required to determine the variation of H 
and m in (7). 

3. Numerical results for q(l) 

The evaluation of (10) and (1 1) is rather complicated because it involves the de- 
rivatives with respect to X of the varying coefficients H and b and of the cn function 
in (7a ) ,  determined under the constraints (14) and (7f). It turns out to be convenient 
to express the variations with respect to X through the slowly varying quantity 
U ( X )  = HL2/h3.  To do this we eliminate other variables from (7) and (14) using the 
identity L = clT and obtain a transcendental 'shoaling equation' for U .  Though we 
found that the local phase velocity c1 is given by (7), consistency requires that in the 
calculation of 7%) we use c for the local value of cl. Then the 'shoaling equation' can 
be written as 

u = g2n)-"Ho/Lo) ( € h / P ) W - ) ,  

where B = -  
3m2 

Ho/Lo is the deep-water wave steepness (which is essentially a measure of the mean 
energy flux F )  and B is defined by r(0)Z = H2B. 

The constraint (15) is invoked by transforming the X derivatives in (11) into de- 
rivatives with respect to U ,  which yields 
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FIGURE 2. The function G ( 0 ;  U )  in (21) as a funct,ion of the phase angle 8. 
Each curve is marked with the value of U = HL2/h3. 

where dU/dh is determined by implicit differentiation of (15). The rest of the com- 
putation consists of calculating the derivatives with respect to h or U of c, q ( O ) ,  m and B. 
This is not discussed in detail here. However, it  may be noted that the quantity 

= 8(cn (2K8, m))/am appearing in 7%) must be evaluated for 6 = constant. Byrd & 
Friedmann (1971, equation 710.52) give a(cn(u,m))/am for u = 2KB = constant. 
From this 6 may be determined by realizing that 

For presentation of the numerical results it turns out to be convenient to write 
crr,A1) as 

a@) = 3(L/h)2h,Tcf(B; U ,  H / h ) ,  (18) 

where L = 6Lo)-l is the wavelength, T = O t l  is the wave period and where the argu- 
ments U and H / h  off have been included explicitly. f is defined by 
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It may further be shown that f can be written as 

f ( 0 ;  U , H / h )  = ( H / h )  G(8;  U ) ,  

c~y(')/H = 3(L/h)2 h,T(g/h)& G(8; U ) .  

(20)  

whereupon (1 8) can be written as 

( 2 1 )  

Note that, if H / h  and one of the variables L / h ,  T(g/h)fr and U aregiven, the remaining 
two may be determined, so in addition to h, the problem has only two parameters, 
corresponding to the two parameters required to specify the unperturbed wave. 

Results for the function G are shown in figure 2, plotted against 8. Since 9 (i.e. x) 
is constant, variation of 8 corresponds to variation of the time 6; values of U are marked 
on the curves. 

It may be shown that in the neighbourhood of the wave crest a$') varies as 03, 
which implies that no tilt in the wave profile occurs there. On the other hand, in the 
wave trough a$') varies approximately linearly with 8, which implies a sloping 
surface profile in the trough with the deepest point just before the next wave crest. 
Thus the resulting wave is actually more skewed in the wave trough than around the 
wave crest. This fact will be confirmed by direct comparison with experimental 
results. 

4. Comparison with experiments and discussion 
The experiments used for comparison were done in a wave flume 60 cm wide. A 

plane beach had been installed whose slope was &, which is a representative value for 
many natural beaches. The waves were generated by a piston-type wave generator 
whose motion 6 was given by 

5 = a, cos wt +a2 cos (2wt +p2), ( 2 2 )  

where the constants a2 and Pz were chosen such that the free second-harmonic waves 
in the flume were reduced to a minimum. In  this way very regular waves were ob- 
tained (Buhr Hansen & Svendsen 1974). The surface variations were measured by 
a resistance-type wave transducer (two silver wires 0.17 mm in diameter and 5 mm 
apart), the signal from which was scanned 400 times per second by a PDP8 mini- 
computer working on-line during the experiment. 

Figure 3 shows measured and theoretical profiles (both cnoidal and second-order 
Stokes) for one of the wave trains used in the following comparison. It should be 
noticed, however, that the property of real importance here is not the agreement with 
some theory but t'he constant form of the waves indicated in figure 3 by the absence 
of free secondary wavelets. 

4.1. Wave-height variation 

The variat.ion of the wave height was discussed by Svendsen & Buhr Hansen (1977) 
and a brief account of their results may be relevant here. They measured the vertical 
distance between the highest and the lowest points of the surface profile using a 
transducer on a carriage moving slowly along the flume. The measured quantities 
were compared with the theoretical results for H. Figure 4 shows the variation on the 
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t 1 

FIGURE 3. Measured and theoretical wave profiles for a constant depth. --, measured; --, 
Stokes second-order theory; , first-order cnoidal theory. Ho/Lo  = 0.0099. 

slope up to the point of breaking. We see that for the curves corresponding to (15)  
(solid lines) the agreement is quite good although H l h  at breaking is about 0.9, which 
is far beyond the value for which a cnoidal theory should work. This does not mean, 
however, that the 'small' terms omitted are insignificant, as is clearly seen from the 
other curves in figure 4, which show the variation of H resulting from two (incon- 
sistent) modifications to bhe theory. The first (dot-dash lines) is based on a local phase 
velocity given by ( 7 )  in connexion with (1  4). This version (suggested by Ostrovskiy & 
Pelinovskiy 1970)  predicts values of the wave height which are somewhat too high 
(by 20-30 yo at the point of breaking). Also this version does not satisfy (12)) which is 
crucial for the numerical calculation of $1). In order to satisfy (1  2) with a local phase 
velocity equal to c1 as given by (7 ) ,  we have to use c1 instead of c in (14). As the dashed 
lines in figure 4 show, the agreement of this second version, which was originally in- 
vestigated by Svendsen & Brink-Kjm (1972) is surprisingly good. 

Owing to the deformation of the wave profile [corresponding to the a@) term in 
( 5 ) ]  the measured vertical distance between the highest and lowest points of the profile 
is slightly larger than H in (7) .  This effect is not included in the theoretical curves in 
figure 4, and would increase bhe predicted values by up to 5 yo at the point of breaking. 

It should be added that the theoretical curves in figure 4 have been corrected for 
the energy losses in the flume, assuming laminar boundary layers and the particle 
velocities according to linear wave theory. 

4.2. Wave profiles 
Wave profiles were obtained at  a number of locations on the slope and three series of 
such profiles are shown in figures 5 ,  6 and 7. The measured profiles are compared with 
t,heoretical wave profiles determined from ( 5 ) ,  ( 7 ) ,  (10) and (11) .  For the evaluation 
of these profiles we used the measured water depth (corrected for wave set-down) at  
the point of the flume where the profile was measured, the wave frequency and the 
bottom slope. The last parameter required to determine the wave profile h is H in (7) .  
In figures 5, 6 and 7 the solid curves show numerical results based on a value of H 
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FIQURE 4. The wave-height variation over a slope of &. Irregular curve, measured values; -, 
theoretical values based on (15); ---, theoretical values based on (7)  and (14); --, theo- 
retical values bawd on (7) ,  and on (14) with c1 instead of c. (a )  Ho/L,  = 0.099. ( b )  Ho/Lo = 0.0039. 
(From Svendsen & Buhr Hansen 1977.) 

which for each profile was determined such that the vertical distance between the 
wave crest and the deepest point of the wave trough, i.e. the ‘wave height’, was the 
same in the measured and the calculated profiles. On the other hand, in the deformed 
wave profile H can also be determined as ~ ( 0 )  - ~ ( 4 )  and this value of H has been used 
in the calculations shown by a dotted line in figure 7 (the corresponding curves are 
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FIGURE 5. Comparison of the measured (crosses) and predicted (curves) wave profiles at various 
depths for an experiment with Ot = 0.6. Bottom slope = &, H,/L., = 0.0165. (a)  H / h  = 0.27, 
L / h  = 9.62, U = 25.0. ( b )  H / h  = 0.389, L/h  = 12.4, U = 59.8. (c) H / h  = 0.585, L/h = 15.3, 
u = 137. 
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not included in figures 5 and 6 as they can hardly be distinguished from the solid 
curves). 

For both the measured and the calculated profiles 7 = 0 corresponds to the mean 
water level, i.e. 

and the profiles have been aligned in 8 by setting 8 = 0 a t  the wave crests of both 
profiles. 

The parameters H / h  and L / h  (and U ,  which is derived from them) are also given 
for each profile. It may be seen that the wavelength is generally more than 10 times 
the water depth, 9.62 being the lowest value (figure 5 ) ,  which means that in all cases 
we are above the deep-water limit for cnoidal waves. Below this limit, which corre- 
sponds to a value of L/h close to 5, no cnoidal solution exists (Svendsen & Buhr Hansen 
1977). 

Figure 5 shows three profiles for which H / h  is between 0.27 and 0.585. The agree- 
ment is convincing even though H l h  is appreciable. 

The wave series shown in figures 6 and 7 are included to illustrate the limitations 
of the theory. The last profiles in each of these figures were taken at  the visually 
determined breaking point. For the wave train shown in figure 6 the general impression 
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FIGURE 6. Comparison of measured (crosses) and predicted (curves) wave profiles a t  various 
depths for an experiment with 8, = 0.6. Bottom slope = &-, H J L ,  = 0.0099. (a )  H J h  = 0.579, 
L / h  = 20.1, U = 234. ( b )  H / h  = 0.673, L / h  = 21.5, U = 311. (c) H / h  = 0.736, L / h  = 22.9, 
U = 386. ( d )  H / h  = 0.871, L / h  = 25.1, U = 549. 

is that the agreement is good up to H / h  values of 0.7 or 0.8 (i.e. figure 6 b  or perhaps 
figure 6c),  whereafter the deviations increase rapidly, though the results do not 
become directly misleading even at  the breaking point. The deviation is particularly 
large where CT$) is large, indicating that close to breaking the effect of the sloping 
bottom is underestimated by the theory. 

In  contrast to this the profiles in figure 7 show appreciable differences between 
theoretical and measured values, even for H l h  = 0.619, although the calculation with 
H based on ~ ( 0 )  - ~ ( 8 )  is slightly better. The reason for this is probably the much 
larger values of L l h  for these waves, which indicate that the bottom slope of h, = & 
is too steep for these waves to satisfy the requirement h, < e3 or CT < 1 (see § 1 ) .  
Recalling that in dimensional terms e = hh/h’ N h’/L’,  we see that this result is quite 
in accordance with the well-known fact that a given slope h, may appear ‘gentle’ to 
a train of waves with relatively small L’lh‘ but ‘steep’ to another train of much 
longer waves. The conjecture that h, is not < €3 in the experiment shown in figure 7 
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FIGURE 7. Comparison of measured (crosses) and predicted (curves) wave profiles at various 
depths for an experiment with 8, = 0.4. Bottom slope = 5%-, Ho/Lo = 0.0039. (a )  H l h  = 0.619, 

U = 726. ( d )  H l h  = 0.797, L l h  = 33.3, U = 884. -, total wave height the same as that 
measured; - - - - - ,  H = q(O)-q(&). 

Llh = 28.9, U = 517. ( b )  H l h  = 0.672, L l h  = 30.5, U = 625. (c) H l h  = 0.732, L l h  = 31.5, 

is further supported by the somewhat different natures of the measured profiles, which 
have a small but unmistakable secondary crest behind the main crest. 

A peculiar aspect of the theory is the behaviour of (21) for relatively large values of 
U .  From figure 2 and from (21) it  can be inferred that the maximum value in 0 < 0 < 1 
of the relative deformation ay(l)/H occurs for U N 50. For a particular wave train 
increasing U means decreasing h, so that the theory actually predicts a (slowly) 
decreasing relative deformation as the wave approaches breaking for U 2 50. 

The measurements show a tendency which is similar though not quite so pro- 
nounced. For the measured profiles the maximum value of the deformation can be 
estimated as max +{a(@ - y( - e)} (0 = 0 at the wave crest), and for the experiment 
in figure 6 this quantity is almost constant at 0-10 ( 10 yo) for U ranging between 25 
and 400. Above U N 400 'the relative deformation increases rather rapidly and the 
wave breaks a t  U N 550. 
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5. Conclusion 
The paper treats the problem of periodic long waves in water of slowly varying 

depth. A solution is determined for the wave profiles which to the first order is a 
slowly varying cnoidal wave. The second approximation, given by (lo), represents 
the deformation of the wave profile due to the sloping bottom. This is assumed small 
in comparison with the wave itself. As a by-product the wave-height variation due to 
the changing water depth can be also determined. 

The solution is shown to be valid for a bottom slope in the interval e5 < h, < e3. 
In  that case the wave deformation at any point of the slope will be determined by the 
local water depth and bottom slope. Thus even though the waves are deformed by 
the sloping bottom they do not disintegrate into solitons. This situation represented 
by the theoretical model will in nature eventually lead to wave breaking on the 
beach. 

Numerical results are presented in figure 2 and from these the solution for the wave 
profile can be evaluated using (5), ( 7 )  and (21). Comparison with experiments on 
regular waves over a plane of slope h, = #x shows fair agreement both for the wave- 
height variation (figure 4) and for the wave profiles (figures 5-7) though the dis- 
crepancies naturally increase for very large values of the ratio H / h  of wave height to 
water depth. As a general result we also notice that the sloping trough predicted by 
the theory as the most significant effect of the sloping bottom is even more pronounced 
in the experimental results. 

Finally, the practical limit of validity of the assumption for the bottom slope is 
discussed. The parameter of primary importance for the relative deformation isshown 
to  be (r (see (2), Q l) ,  which means that the ratio of wavelength to water depth is 
just as important as the bottom slope h,. It is suggested that owing to the large 
values of e-1 the waves in figure 7 do not in fact satisfy the criterion (r < 1.  

The authors are indebted to Dr 0. Skovgaard for his advice on numerical evaluation 
of the results and to Peder Jensen M.Sc. for his assistance during the period when he 
joined the study. We also wish to thank Dr M. E. McIntyre for valuable suggestions 
for improving the presentation. 
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